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The reference-spectrum method for infinite nuclear matter is generalized in a simple way so as to apply to 
the surface region of a large nucleus. This permits one to calculate the reaction matrix for particles interacting 
in the surface region, and the total energy of the nucleus can therefore be found to first order in the Brueck-
ner-Goldstone expansion. Two equivalent formulas for the nuclear surface energy, both valid to first order in 
the Brueckner-Goldstone expansion, are derived and discussed. These results are then used to calculate the 
surface energy of a large nuclear slab. The single-particle wave functions are calculated in a Woods-Saxon 
potential which is chosen to reproduce the empirical surface thickness; and the two-body interaction, which 
acts only in S states, is assumed to consist of an exponential attraction outside a hard core. The calculation 
gives the reasonable value of 20.6 A1^ MeV for the surface term in the semiempirical mass formula. The chief 
defect of this trial calculation is the lack of self-consistency in the one-particle wave functions. A self-con
sistent calculation would give a more reliable estimate for the surface energy and would also predict the sur
face thickness theoretically. A brief discussion is given of how the methods of this paper could be used to at
tack the self-consistency problem. 

I. INTRODUCTION 

A NUMBER of theoretical investigations of the 
nuclear surface have been carried out in the past. 

The phenomenological treatments are typified by the 
"semiempirical statistical method" developed by 
Wilets,1 which allows one to derive relations among 
various experimental quantities without becoming in
volved in the full complexity of the many-body problem. 
Similar methods have been applied by Skyrme,2 by 
Bodmer,3 and by Hale and Present.4 Swiatecki5 has con
sidered a plane nuclear surface by means of perturbation 
theory, and Rotenberg6 has obtained a reasonable sur
face thickness in his Hartree-Fock treatment of a finite 
nucleus. Both of these authors used nonsingular two-
body interactions, however. Blanchard and Seyler,7 in 
their semiclassical nuclear model, have included the 
short-range repulsion, which is known to exist between 
two nucleons, by means of a velocity-dependent force. 
Their model of finite nuclei has reasonable surface 
properties. The Green's function approach has been 
sucessfully applied by Reynolds,8 using a separable 
potential with a "hard shell" repulsion. Brueckner, 
Gammel, and Weitzner9 have extended Brueckner's 
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nuclear matter theory10 to the case of finite nuclei, and 
calculations have been made on several doubly-magic 
nuclei.11 These calculations are certainly the most 
ambitious and realistic which have been made, but the 
binding energies and nuclear radii obtained are some
what too small, especially for the lighter nuclei. Since 
the theory is specifically designed to be correct for 
infinite nuclear matter, it seems likely that the surface 
region is causing the trouble, and further study of the 
nuclear surface appears to be worthwhile. 

Brueckner's theory is based on the Brueckner-Gold
stone perturbation series,12 and the basic quantity in 
this expansion is the reaction matrix, or G matrix. The 
development of the reference spectrum method by 
Bethe, Brandow, and Petschek (BBP)13 has provided a 
new and much simpler method of calculating the nuclear 
matter G matrix than was previously available. It is 
therefore worthwhile to see if this method can be applied 
to the nuclear surface, and the present work makes a 
start in this direction. We first generalize the reference-
spectrum method in a simple way so that it may be used 
in the surface region. It is found that the G matrix may 
be easily calculated, once the two-body wave function 
is obtained. The wave equation for this function is 
derived, and two methods for its solution are discussed. 
It is also necessary to obtain, within the framework of 
the Brueckner-Goldstone theory, a formula for the sur
face energy, and two such formulas are derived. The 
method is finally used for a numerical trial calculation 
of the nuclear surface energy. 
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II . GENERALIZATION OF THE REFERENCE 
SPECTRUM METHOD 

To apply the Brueckner-Goldstone theory,12 one 
starts with a single-particle Hamiltonian h which has a 
complete orthonormal set of eigenfunctions <£™(r) with 
eigenvalues ew, i.e. A(r)<£n(r)==€w<£n(r). If the nucleus 
under consideration contains A particles, the unper
turbed many-body ground state is formed by putting 
particles into the A one-particle states of lowest energy 
to form a Slater determinant. These normally occupied 
states make up what is called the Fermi sea, while one-
particle states of higher energy are called intermediate 
states. One must then compute matrix elements of the 
two-body operator G, which is defined by 

G=v-v(Q/e)G. (2.1) 

Here, v is the two-body potential, Q is the Pauli operator 
which prohibits scattering into occupied states, and e is 
an operator whose coordinate space representation is 

e(rhr2) = h(r1)+h(r2)-H, (2.2) 

where H is the starting energy.14 The first-order ap
proximation to the ground-state energy is 

E~H2n(n\T\n)+% ^2mn(mn\G\mn—nm), (2.3) 

where T is the kinetic energy. Of course, if this is to be 
a good approximation, the <j>n's and €n's must be chosen 
self-consistently. We assume for the moment that this 
difficult task has somehow been accomplished and turn 
our attention to the problem of calculating matrix 
elements of G. 

For the interaction of two particles in states <j>m 

and 0n, the unperturbed two-particle wave function 
$mn(ri,i*2) is just the product of $m(ri) and <£n(r2), and 
we define the exact two-body wave function ^ ^ ( r i , ^ ) by 

G*TOn(ri,r2) = trtF»n(i*i,r2). (2.4) 

When r=|r i— r2| becomes large, ^mn must approach 
<3>mn, and if v contains a hard core, ^rmn must vanish 
whenever r<c, where c is the core radius. Combining 
(2.1) and (2.4) leads to 

^mn=^mn- (l/e)Qvtym (2.5) 

which is a difficult equation to solve because of the 
presence of the rather complicated operator Q/e. 

The basic idea of the reference-spectrum method is to 
approximate Q/e by a simpler operator. Then (2.5) can 
be easily solved, and the small error caused by the 
approximation can be calculated by a perturbation 
method.15 For the problem of nuclear matter, BBP have 
shown that, for the purpose of operating on states with 
momenta in the "important range" between 3 and 5 
inverse fermis (F_1), h can be well approximated by 

14 The proper choice of H is discussed in detail in BBP. For our 
purposes, it will always be correct to set H~ em+en, where m and 
n label the initial states of the two interacting particles. 

15 This correction is considered in BBP but will be neglected 
here. 

the "reference Hamiltonian" hR
7 given by 

hR=-(l/2m*)V2+A2. (2.6) 

In this equation, tn* is the dimensionless effective 
mass,16 which BBP estimate to be about 0.9, and A^ is a 
constant which seems from the work of BBP to be very 
close to zero. It is not a good approximation to replace 
h by hR when operating a state whose momentum is 
outside the range 3 F _ 1 to 5 F - 1 , but the Fourier com
ponents of the function Qv^mn, to which the operator e~x 

is applied in (2.5), are small outside this momentum 
range. It is thus quite accurate in (2.5) to replace e by 
eR, where eR is defined by (2.2) with h replaced by hR. 
Having set e equal to eR in (2.5), we may replace Q by 
unity without causing serious error because l/eR applied 
to states in the Fermi sea gives a rather small result. 
These approximations are discussed quantitatively in 
BBP, where it is estimated that they cause an error of 
about 5% in the potential energy per particle of nuclear 
matter. 

When Q/e is replaced by l/eR
9 (2.5) becomes 

eRZmn=v^n (2.7) 

where we have defined Z m n = $ m „ - ^ . In infinite 
nuclear matter the one-particle wave functions are just 
plane waves, e.g., <j>m(ri) = Qr1/2eik'11, where 12 is the 
normalization volume. So, by putting (2.6) into (2.2) to 
find eR, and changing to relative and center-of-mass 
coordinates via the equations 

r = r i - r 2 , k=J(km—k„), (2.8) 

R = i ( r i + r 2 ) , K=k m +k„ , (2.9) 

we find that (2.7) becomes 

[ v ; - 7 2 ] U ( r ) = - ^ 4 n ( r ) , (2.10) 

which is the reference wave equation of BBP and is 
easily solved by standard methods. In this equation, 
y2 is given bv 

y2=iK2+m*(2A2-H), (2.11) 

and the center-of-mass motion has been eliminated by 
writing 

(2.12) 

where ^ ( r ) = eik'r, and f«m=0mn—^»»». 
These ideas can now be applied to a nucleus with a 

surface. The only difference is that the one-particle 
Hamiltonian h will change as we pass through the sur
face region, and our reference approximation hR for this 
operator must vary in a corresponding way. 

Let us consider a large nuclear slab of thickness L and 

Vmn 

$mn 

£mn 

= Q-1exp(iK-R) 

Vmn(r)" 

</>mn(r) 

^fmn(r) 

16 We use units in which ¥M~1 = 1, where M is the nucleon 
mass. Energy is then measured in inverse square fermis, and this 
can be converted into MeV by using the relation 1 F - 2 = 41.467 
MeV. 
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area &. We will eventually allow d and L to become 
infinite in such a way that LQr1/2 goes to zero; thus the 
surface area becomes equal to 2 Ct in the limit. We take 
the x axis normal to the surface of area & and let the 
nucleus extend from #=0 to x=—L. We essentially 
have translational invariance in directions perpendicular 
to the x axis, and the one-particle wave functions are 
therefore of the form 

<t>n(t) = 2l/2Nn-
1/2a-1/2 exp(&„rrjO*»(*), (2.13) 

where, for occupied states, un(x) decays exponentially 
outside the nucleus and becomes a sine wave of unit 
amplitude inside. Nn is a normalization constant which 
is approximately equal to L, and the subscript " J . " is 
used to indicate that part of any vector which is normal 
to the x axis. 

Far inside the nucleus, conditions are the same as in 
nuclear matter, and hR must be given by (2.6). Far 
outside, we just have empty space, and hR must reduce 
to — JV2, the correct result for free particles. In either 
of the two surface regions, near x= 0 or x= — L, hR must 
vary smoothly from its nuclear matter value to its free-
space value. The simplest operator which has this 
property is 

1 1 df d 
/(*)V2 +A 2w(x), (2.14) 

2m* 2m* dx dx 

where f(x) approaches 1 inside the nucleus and m* out
side, and w(x) goes from a value of 1 inside to zero 
outside. The term involving (df/dx), which is necessary 
in order that the operator be Hermitian, is nonzero 
only in the surface region. 

The behavior of f(x) and w(x) must be adjusted in the 
surface region to make the effect of (2.14) on the im
portant intermediate states very nearly the same as the 
effect of h on these states. Assuming that this can be 
done, we use (2.14) for hR and substitute into (2.7) to 
obtain the approximate equation 

Vx2+V2
2-

df{xi) d df(x2) d -| 

d%\ dxi dx\ dx2. 

+A2[w(x1)+w(x2)~l-H |Z»„(ri,r2) 

1 

2m* 

= vVmn(rhr2). (2.15) 

By solving (2.15) one can obtain an approximation for 
^mn and hence for the G matrix. The dependence of 
(2.15) on Rx is trivial, but the dependence on X, the 
x component of R, is not. Thus, we are faced with a 
differential equation in which the variables r and X are 
thoroughly "mixed together." There is no standard 
method for solving such an equation, and each case 
must be treated individually by suitable approximation 
methods. 

The question of whether the self-consistent h can be 
well represented by (2.14) in the surface region remains 
open. To investigate this point, it is necessary to decide 
upon a self-consistency condition for the one-particle 
potential U, i.e., to decide which higher order diagrams 
in perturbation theory are to be cancelled by proper 
choice of this potential.17,18 This will lead to a prescrip
tion for calculating U in terms of matrix elements of G. 
Hence U can be estimated, and one can see if f(x) and 
w(x) can be chosen in such a way that (2.14) is a good 
approximation to h^T+U. The methods of this paper 
could be used for this purpose, but this has not yet 
been done. 

Setting the Pauli operator Q equal to unity should be 
an even better approximation in the surface region than 
in nuclear matter. When the particle density becomes 
low, Q prohibits fewer and fewer intermediate states and 
has a correspondingly smaller effect on the correct wave 
function ^fmn. 

In order to calculate the wave functions of occupied 
states, we can try to represent h by an expression of the 
same form as (2.14) but with different values of m* and 
A 2 and different functions / and w. The effective mass 
should probably be about 0.6,10 and A 2 must be negative 
and of the order of 100 MeV in magnitude. These 
changes are necessary because we want to approximate 
the effect of the self-consistent h on normally occupied 
states, while our previous discussion was concerned with 
highly excited intermediate states with momenta be
tween 3 F - 1 and 5 F - 1 . To see whether or not the effect 
of h on occupied states can be approximated in this way 
one must carry out an investigation similar to that out
lined above for intermediate states. 

III. TRIAL CALCULATION 

A. Simplifying Assumptions 

We have carried out a trial calculation along the lines 
suggested above. For simplicity, the following rather 
drastic assumptions were made. 

First, the one-particle potential U(x) for occupied 
states was taken to be a local Woods-Saxon well, denned 
by saying that 

U(x) = -U0(l+ex/a)-1, when x>-\L (3.1) 

and that U(x) is symmetric about the point x=— \L. 
The constant U0 is determined by requiring that 
the energy per particle of nuclear matter, given by 
0.3kF*-Wo, be - 1 5 MeV. Taking *„=1.5 F"1 then 
leads to a value for U0 of 2.07 F~2. The length a was set 
equal to 0.8 F, and the calculated particle density was 
then found to have a reasonable "90-10 distance" of 

17 The self-consistency condition for nuclear matter is discussed 
by BBP and by R. Rajaraman, Phys. Rev. 129, 265 (1963). 

*8 A very careful and detailed investigation of this question for 
finite nuclei has been made by B. H. Brandow in his Ph.D. thesis, 
Cornell University, 1964 (unpublished). See also Brandow's note 
in Phys. Letters 4, 8 (1963). 
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2.48 F. This potential is unrealistic because it has no 
velocity dependence, and a better calculation could be 
made by using a one-particle Hamiltonian of the form 
given by expression (2.14). The reference Hamiltonian 
for intermediate states is chosen to be simply 

hR=-(2m*)-lV\ (3.2) 

with m*=0.9. This is obtained from (2.14) by setting 
A 2 equal to zero (in accord with BBP) and f(x) equal to 
unity. This choice gives the correct result inside the 
nucleus but fails to reduce to the free-particle Hamil
tonian outside. We can hope the resulting error will not 
be too serious since the two values of UR differ by 
only 10%. 

The two-body potential is assumed to be that con
sidered previously by 'Moszkowski and Scott19 and con
sists of an exponential attraction outside an infinitely 
repulsive core. The potential acts only in S states, for 
which it is given by 

v(r) = + <x> , r<c, 
= —VQ exp(—n(r— c)), r>c, 

where t>0= 6.2737 F"2=260 MeV, M= 2.08306 F"1, and 
c=0.4F. 

On the basis of these assumptions, we have calculated 
the one-particle wave functions and the diagonal 
G-matrix elements which appear in the first-order ex
pression for the ground state energy. By comparing the 
energy of our nuclear slab, which has a surface, to that 
of infinite nuclear matter, we have obtained an estimate 
for the nuclear surface energy. Our next task is to derive 
the formulas which are needed to carry out these 
calculations. 

B. One-Particle Wave Functions 

The one-particle wave functions have the form of 
expression (2.13), and by requiring that this be an 
eigenfunction of — |V2— U^Jrex,a)~1, we find that the 
Schrodinger equation for un(x) is, for x> —\L, 

d2un 

dx2 
- Zkn*2- 2U,{\+e~xla)~^un(x) = 0. (3.4) 

We need only consider the region x>— \L in detail 
because, once the wave functions in this region are 
known, those in the region x< — \L can be found from 
symmetry considerations. The energy eigenvalue is 
given by 

€n=ikn
2-Uo, (3.5) 

where kn is the vector whose x component is knx and 
whose perpendicular component is knj.. The wave func
tion un(x) is normalized such that 

un(%)~ — sin(knxx-{-a), (3.6) 

19 S. A. Moszkowski and B. L. Scott, Ann. Phys. (N. Y.) 11, 
65 (1960). 

when x is in the interior of the nucleus, where a is a 
phase factor which depends on knx. This phase factor is 
determined by integrating Eq. (3.4) from far outside 
the nucleus, where the exponentially decreasing solu
tion must be taken, in towards the interior, and com
paring the resulting function with the asymptotic 
form (3.6). 

If one starts far to the right of the nucleus and inte
grates towards the interior in this way, the resulting 
wave function must join smoothly, at x— —1£, with the 
function obtained by starting far to the left of x=—L 
and integrating inwards. This condition determines the 
allowed values of kx, and one easily finds that these 
allowed values are determined by the equation 

\kxL—a(kx) = %nw; n=l, 2, 3, 

C. Calculation of the G Matrix 

(3.7) 

Since G$mn=v&mn, the matrix element (mn\G\mn) is 
just the integral of $mB*#m„. In the case of nuclear 

(33) matter, we introduce partial waves by writing 

Lfmn(r)J 

= E »L[4ir(2L+l)]1/V-1 

LM 

(ULMif)' 

<t>LM(r) YLM(r,x), 

(3.8) 

where YLM{r,x) is a spherical harmonic of r taken in a 
system whose polar axis is in the x direction. Taking the 
polar axis in the x direction, rather than in the direction 
of the relative momentum vector, will later prove con
venient when the presence of the nuclear surface is taken 
into account. Since <£*m(r) = exp(ik«r), we find that 

4>LM{r)~-
{L-\M\)\~f12 

L(L+\M\) 

Hi 1 

)!J 
PLM(k-x)rjL(kr), (3.9) 

where kx has been taken to point in the direction whose 
azimuthal angle <p is zero. 

In terms of partial waves, we easily find for the 
nuclear matter G matrix, 

(mn\G\mn) = Q-1 £ 4TT(2L+1) 

X / cj>LM(r)v(r)uLM(r)dr. (3.10) 
Jo 

This result cannot be used in its present form for a 
potential with a hard core, but BBP have shown how to 
derive a useful expression for the radial integral. We 
shall later have to evaluate a radial integral which differs 
from (3.10) in that ULM(T) corresponds to k0, y

2, while 
4>LM{T) is the free wave function for a different pair of 
parameters, say k} co

2. Rajaraman,17 using the methods 
of BBP, has shown that this more general radial integral 
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is given by 

r y2+k2 rc l p 
/ <t>LM(k,r)v(r)uLM(ko,y,r)dr= / <j>LM(k,r)(j>LM(ko,y,r)dr-\ <j>LM{hyc)\ 

Jo tn* Jo m* L 

d4>LM{k,r) dHLM(k,r)-

dr dr 

where HLM is denned by 
- / . 

+ / \j>LM{k,r) — HLM(k,r)yuLM(kB,y,r)dr, (3.11) 

HLU(k,r)=<t>LM(k,c)hLV(iyr)/hLV(iyc). (3.12) 

By setting k = ko in (3.11), one obtains the BBP formula for the radial integral of (3.10). 
For the problem of the nuclear slab, we have seen that the dependence of the two-particle wave functions on Rx 

is trivial, while their dependence on X and r is not. This fact motivates us to write 

f^mn(ri,r2)l 
2 

3>mn(ri,r2) = [exp(iKi-Ri)] 
aNm

1/2Nn
1/2 

Since $m» is the product of two functions of the form (2.13), we have 

<t)nin(r,X) = um(X+ix)un(X—%x) exp(^kj.Ti), 

f\l/mn(r,X) 

<t>mn\YiX) 

^£mn(Y,X) 

(3.13) 

(3.14) 

where x is the x-component of r. The partial wave amplitudes now depend on X as well as on r} and we write 

\f/mn(r',X)~) 

4>mn(r,X) 

^^mn^jXjJ 

= £ iM[_^{2L+\)J'2r-1 

LM 

uLM(rX) 

Uu{r,X) 

YLM(ryx), (3.15) 

where the factor iM is inserted in order to make the 
radial functions real. By using (3.14) and (3.15), and 
taking kj. to point in the direction whose azimuth angle 
is zero, we obtain the formula 

<t>LM(r, 
r ( L - | l f | ) h 1 / 2 fir 

'X L(L+|M|)!J i , r 
um(X+w)un(X—w) 

-(L+\M\)\ 

XJM(ki(r
2-4:W2y^)PLM(2w/r)dw, (3.16) 

can be accomplished by manipulating the equations 
satisfied by <j>LM(r,X) and ULM(r,X), and we therefore 
turn to a derivation of these equations. 

The reference equation for the nuclear slab is easily 
written down by starting from the formula eRZmn=v$rmn 

and using Eqs. (2.2) and (3.2) to find the explicit form 
of eR. After eliminating the dependence on Rx and intro
ducing partial waves, one finds 

where JM is a Bessel function, and PLM is an associated 
Legendre polynomial. 

The G matrix is easily found to be 

(mn\G\mn}^(4/aNmNn) j'gmn(X)dX, (3.17) 

where 

gmn(X)= L*(r ,Z)^Mft=EM2i+l) 
J LM 

XI <t>LM(r,X)v(r)uLM{r,X)dr. (3.18) 
Jo 

In order to use (3.18) for a potential with a hard core, 
we must derive a formula analogous to Rajaraman's 
result for nuclear matter which is given by (3.11). This 

rd2
 J 

Ldr2 

d2 L(L+1) 1 d2 "I 
7 o 2 + \{LM(r,X) 

4dX2J 

where 
= —m*vuLM(r,X), (3.19) 

y^-nPH+KJ/l. (3.20) 

Since $w(r) satisfies a simple one-body Schrodinger 
equation, and $m«(i,i,r2) is just the product of 0m(ri) 
and <£«(r2), it is easy to find the differential equation 
obeyed by $>mn. Then, after eliminating Rj. and going to 
partial waves, one finds without difficulty that 4>LM(r,X) 
satisfies 

' d2 L(L+1) 1 d2 ~] 
+i(kmx*+kn**)+ \4>LM(r,X) 

dr2 r2 4 dX2J 

= ILM(r,X), (3.21) 
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where 

um(X+w)un(X-w)F(w,X) 

XJM(kL(r*-4w*y'*)PLM(2w./r)dw, (3.22) 

and 

F(w,X) = ( l + e x p C C X + w ) / ^ ) - 1 

+ ( l + e x p [ ( X - ^ ) A ] ) - 1 . (3.23) 

We can now obtain a useful expression for the radial 
integral of (3.18). By multiplying (3.19) by 4>LM(r,X) 
and (3.21) by £LM(r,X), subtracting, and integrating 
from r = 0 to r = c + , we find a usable formula for the 
integral over the region of the hard core, and the final 
result is 

/ 4>LM(r,X)vuLM(r,X)dr 
Jo 

= _ / ((f)LM)Hr 
?n* Jo 

+M*'1 / <j>LMlLMdr+tn*~l<f>LM{c)uLM(c+) 
Jo 

/.CO 

+ / (t>LMVULMdr, (3.24) 
J c+ 

where the prime on ULM indicates differentiation with 
respect to r. In deriving this equation, we have made use 
of the relation ULM — <S>LM—^LM and the fact that 
4>LM—$LM whenever r<c and CJ>LM —> 0 as r —•> 0. 

The above formulas allow us to calculate the G matrix, 
either in infinite nuclear matter or in the nuclear slab, 
once the reference equation for ULM has been solved in 
the region r> c. We consider S waves only and find from 
(2.10) that, in the case of nuclear matter, f0(0 satisfies 

d2U 
72f o= - w M * 0 - r o ) , (3.25) 

dr2 

and this equation can easily be solved numerically. 
The reference equation in the surface region is given 

by (3.19) and can only be solved approximately because 
it contains derivatives with respect to both r and X. 
For values of X such that | um(X)un(X) | is reasonably 
large, we can derive a useful approximation procedure 
by defining 

x(r,x) = lo(r7X)/umun. (3.26) 

(The argument of um or un is understood to be X unless 
otherwise indicated.) The idea is that most of the X 
dependence of £o(r,X) will be contained in the factor 
UifnUyi S O that % will depend weakly on X. Putting (3.26) 

into (3.19) gives, for S waves, 

r__72(X)l(r>Z)== _w J"_JL_X] 
Ldr2 J Lumun J 

1 dX d 1 d2
X 

(UrnUn) , (3.27) 
2umun dX dX 4 dX2 

where we have defined 

1 d2 

7 2 (X)= 7 o 2 (umun). (3.28) 
dX2 

In first approximation, the last two terms on the right-
hand side of (3.27) are neglected. The resulting equation 
contains X only as a parameter and can be easily solved. 
In fact, it is of the same form as the nuclear-matter 
reference equation. By using the first approximation to 
estimate the neglected terms, one can obtain a second 
approximation, and this procedure can be continued 
indefinitely. I t is found that the lowest order of this 
"% approximation" gives sufficient accuracy in our case. 

When X is near a zero of 
vim Oi *v/i, the x approxima

tion can no longer be used. Of course, this situation 
occurs in the outer part of the surface, where all single-
particle wave functions decay to zero, but this very fact 
causes gmn(X) to be small in this region, and high ac
curacy is therefore not required. As we move through 
the surface towards the interior of the nucleus, however, 
we eventually reach the first node of um or un (see Fig. 2), 
and gmn(X) is not necessarily small here. The first node 
always occurs at a point which is sufficiently far inside 
the nucleus to allow um and un to be approximated by 
sine waves, and this fact permits us to solve (3.19) by 
a different approximation method. 

Let us suppose, then, that for values of | x | less than 
the range of the nuclear force, we can write 

um(X+%x)~Am s m O w ( X + £ * ) + « » ] , (3.29) 

where Am, pm, um are constants, with a similar expres
sion for un{X—\x). Then it is easy to show that the 
5-wave component of <f>mn(x,X) is 

0 o ( r , X ) ^ — \ A m A n co s [P iX+ 5i](sin*ir/*i) 

+%AmAn cos [P 2 X+ 52](sin^2r/^2), (3.30) 
where 

Pl^pm+pn, P<L=pm~pn, (3.31) 

5i = o>w+cow, h—o)m—con, (3.32) 

k^kf+KPn-Pn)*, k2
2 = kl

2+l(pm+pn)2. (3.33) 

If we now write 

ro(r,X)= -\AmAn cos[P1X+51]f0
( 1 )(r) 

+UmAn cos[P2X+52]f0
( 2 )(r) , (3.34) 

and substitute (3.30) and (3.34) into the reference wave 
equation, we find that this equation splits into two 
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nuclear-matter equations, one for f0
(1) and one for <To(2). 

Solving the reference equation in the surface region thus 
reduces to solving two nuclear-matter equations, adding 
the solutions, and weighting these solutions according 
to (3.34). 

Thus we are able to calculate diagonal matrix ele
ments of G, and exchange matrix elements are easily 
included by inserting in expression (3.18) a factor 3/4 
for even values of L} and a factor 5/4 for odd L. 

D. Surface Energy Formula 

The nuclear slab can be specified by any three of the 
variables ®, L, A, &F, where the Fermi momentum UF is 
the momentum of the highest occupied single-particle 
state and A is the total number of nucleons. The details 
of the surface region, e.g. the behavior of the particle 
density and single-particle potential are, in principle, to 
be found from the self-consistency requirements. Note 
that the Fermi momentum kF, which determines the 
interior particle density, is explicitly put into the calcu
lation at the beginning. One should carry out a self-
consistent calculation for each value of kF) then the 
true nuclear ground state corresponds to the value of 
kF which minimizes the total energy (for a fixed value 
of A). This is analogous to the procedure which one 
follows when calculating the properties of infinite 
nuclear matter. 

Choosing A, d, and ^ a s independent variables, we 
can write for the total energy E of the nuclear slab, 

E=Ag(kF)+2aS(kF)+ • • • , (3.35) 

where terms of order d1/2L and smaller, which are 
irrelevant for this discussion, have been omitted. We see 
that g(kF) is the energy per particle of nuclear matter 
with Fermi momentum kF, and S(kp) is, by definition, 
the corresponding surface energy and is given by 

S(kF) = (E-Ag(kF))/2a. (3.36) 

Thus, S(kF) is found by calculating the total energy E, 
subtracting the energy the same number of particles 
would have if they were all located in infinite nuclear 
matter, and dividing the result by the total surface area. 

The ground state value of kF is the one which mini
mizes expression (3.35) for fixed (2, A. It is clearly equal, 
except for terms which vanish in the limit of a large 
system, to the equilibrium value for infinite nuclear 
matter, which we take to be 1.5 F"1. 

We want to write (3.36) in a more explicit form which 
is useful for calculations, but in order to do this we must 
first derive some preliminary results. We will need a 
summation formula, an identity involving the normali
zation of the wave functions, and an asymptotic formula 
for gmn(X) which is valid when the point X is in the 
interior of the nucleus. 

We will calculate all quantities to first order in the 
Brueckner-Goldstone expansion, and this will involve 

summations over the occupied states <£„, which we may 
label by the vector k»=(£wa;,kj.). We must, of course, 
approximate all such sums by integrals, and the ap
proximation must be sufficiently accurate to cause the 
resulting error in the surface energy S to vanish as 6 
and L tend to infinity. 

For summing over ki? we will use the usual replacement 

£ - * 4 - — [dkL, (3.37) 
ki (2TT)2 J 

where the factor 4 takes account of spin-isospin de
generacy. When a function of order unity20 is summed 
over kx in this way, in order to evaluate E or A, the 
leading term is proportional to a, and the error is of 
order a1/2. To evaluate expression (3.36), we must 
divide by 2 <3L and perform the sum over allowed values of 
kx, i.e., we must sum a term of order unity, with an error 
of order <3r1/2, over kx. The sum of the error term over 
kx gives a result of order LGr1/2

y which vanishes in the 
limit a, L—>co ; hence, the replacement (3.37) is suffi
ciently accurate. Summing the accurate term of order 
unity over kx gives a leading term of order L, a "first-
order" term of order unity, and additional terms pro
portional to Lr1 and smaller. We must find a formula 
for summing over kx which gives both the leading term 
and the term of order unity correctly. 

The sum over kx of any function f(kx) can be con
sidered as the sum over the integer n which labels 
allowed values of kx according to (3.7). If / i s a smooth 
function, it is then easy to show that the approximation 

nF pnF+% 

£ /(») -> / f(n)dn (3.38) 

is in error by a quantity of order L-l(df/dkx)*v. So, if / 
and df/dkx are both of order unity, the replacement 
(3.38) is sufficiently accurate for our purposes. Changing 
variables from n to kx via (3.7), and noting that 
nF = kFL/7r—2a(kF)/ir, we easily deduce the formula 

p^F »JcF 

£ /(*.) = (L/ir) / f(kx)dkx- (2/TT) / f(kx)a' (kx)dkx k* Jo Jo 

+Kf(kF)-f(0)l, (3.39) 

which is accurate except for terms which vanish as 
L —»oo and is therefore acceptable for our computations. 

In the interior of the nucleus, the one-particle wave 
functions are essentially sine waves, and this fact allows 
us to calculate the asymptotic form of gmn(X)y which 
we call gmn(X), in terms of nuclear matter matrix ele
ments. Neglecting exponentially small terms, we see 

20 We use the phrase "of order unity" to describe any quantity 
which remains finite as A,L,a tend to infinity. 
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from (3.6) and (3.14) that, when X is in the interior, 

<£ww(r,X) = exp(ikj. • rx) sin[knx(X+%x)+am~] 

Xsm[knx(X-lx)+an~}. (3.40) 

Clearly, </>mn(r,X) can be written as a sum of nuclear 
matter wave functions (i.e., plane waves) and writing 
<t>mn in such a way induces a similar breakup of \j/mn{r,X) 
and fmn(r,X) into nuclear matter functions (see the 
discussion of the sine wave approximation near the end 
of Sec. C). 

The matrix element (3.18) for gmn(X) then becomes 
the following sum of nuclear matter matrix elements: 

gmn(X)-=i{g1i + g22+gilCOS[2(kmx+knx)X+2(am+an)l 

+922 cos£2(kmx—knx)X+2(am—an)] 
— (gi2+g2i) cos[2£wa;X+2an] 

- (0i2+0ai) cos[2£m*X+2am]} . (3.41) 

Here, we have made the definitions 

f W ' V E 4 T T ( 2 L + 1 ) ( ) [ <t>LM™vuLM™dr, 
\gj LM V(-l)W./o 

(3.42) 

where <J>LM(/3) and ULM(8) are nuclear matter wave func
tions calculated for relative momentum k and total 
momentum K given by 

A= [*A
a+K*».=F*».)a]1/2 (3.43) 

K=ZK^+(km^knx)
2J/2. (3.44) 

(In these equations, the upper sign corresponds to super
script 1 and the lower sign to superscript 2.) In deriving 
a formula for the surface energy, we will also make use 
of the indefinite integral of gmn(X), which we call 
gmrJiX) and which is given by 

gmnI(X) = H(g11+g22)X 

+%giism[2(kmx+knx)X+2(am+an)y(kmx+knx) 
+ig22sm[2(kmx—knx)X+2(am—an)~]/{kmx—knx) 

— K g l 2 + g 2 l ) Sm[_2knxX+2an~]/knx 

—§(0i2+02i) sin[2£wa;X+2a:w]/&wa;}. (3.45) 

Next we define the quantity 5N(kx) by 

Nn=L+5N(knx), (3.46) 

and we derive the interesting and useful identity, 

5N(kx) = - 2{da/dkx). (3.47) 

This identity can be made plausible on physical grounds 
by noting that the spacing Akx between allowed values 
of kx is given by 

Mzx=ir/[L-2(da/dkx)~], (3.48) 

according to (3.7). But this is the spacing appropriate 
to a box of side L—2(da/dkx), and since particles of 
momentum kx can be thought of as moving in a box 

whose "effective size" is L+bN(kx), it is quite natular 
to make the identification (3.47). 

To demonstrate the truth of (3.47) mathematically, 
write the Schrodinger equation (3.4) for each of two 
wave functions U\{%) and Ui{x), corresponding to 
momenta k\x and #2*, respectively. Multiply the equa
tion for ui by U\ and vice versa, subtract, and integrate 
from — \L to oo . After dividing the result by {kix—k±x) 
and taking the limit k2X —» kiX) one obtains 

/ . 

L sm(knxL—2a) 1 da 
un{x) 1 2 ^ = . (3.49) 

- J L 4 \knx 2 dknx 

For allowed values of kx, the sine vanishes, and j un(%) \2 

is symmetric about — \L. Thus, we can write 

r00 L 
2 / hin(x)\2dx=UL+dN) = — 

J-*L 2 

da 

dkx 

(3.50) 

from which (3.47) follows immediately. 
We are now ready to derive a formula for the surface 

energy, and we consider first the kinetic energy con
tribution, which is denoted by 5(K.E.). Since the kinetic 
energy per particle of infinite nuclear matter is 3 & F 2 / 1 0 , 
we see from (3.36) that 

1 1 3 
S(K.E.) = —Z(n\T\n) W E i . (3.51) 

2a n 2a io 
Let us consider first the evaluation of (l/2Ct)X)n 1, 

which we may obviously write in the form 

1 1 
— Zi=— E 
2a n 2a n 

> n ( r ) | V V . (3.52) 

Now, one can evaluate this expression by either of two 
distinct methods: One can first carry out the space inte
gration for each n and then sum over n, or one can first 
sum over n for each point r and then integrate the 
result over all space. The first of these methods will be 
called the "summation method," and the second, which 
in this example amounts to integrating the particle 
density over all space, will be called the "density 
method. , , 

Applying the summation method, we easily find, with 
the help of (3.39), 

1 LkF
z 

— E l — — 
2a n 3TT2 

X / ( (kF
2-kx

2)a'(kx)dkx , (3.53) 
47T 

where a'(kx) means da/dkXJ and we have dropped, as we 
always will, terms which vanish in the limit Ofc—»<*>, 
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If we now try to apply the density method, we find 
ourselves in difficulty at once. The trouble is that, far 
inside the nucleus, the percentage change in <£«(r) be
tween successive allowed values of kx is large, and 
formula (3.39) is therefore not reliable for the calcula
tion of the particle density p(x), which is defined by 

satisfied by <£»(r). A straightforward application of the 
summation method yields 

1 

— E<»|z» 
2a n 

p(*) = £ l*»( r ) | 2 . (3.54) = / (kF*-kx%'(kx)dkx 

IOTT2 47r27o 

Nevertheless, we proceed to derive an approximate 
formula for p(x). We perform the summation by using 
only the leading term of (3.39), and we replace Nn by L 
in expression (2.13) for 0w(r), thereby obtaining 

2 rkF 

p(x)=~ / ( (kF
2-kx

2)\u(kx,x)\2dkx. (3.55) 

One might expect to find an error of order Lrl in the 
last expression; hence, integrating it over the entire 
nucleus in order to evaluate (1/2 Gfc)En 1 would give the 
wrong answer. 

The fact is, though, that using (3.55) to calculate 
(1/2 Cfc)En 1 leads to the correct expression given in 
(3.53). This can be shown by combining equations 
(3.52), (3.54), and (3.55), and by using (3.49) for the 
integral with respect to x of | u(kx,x) |2, to find 

1 2 rh* 
— E l = - (kF

2 

2a n 7T2Jo 

-kx
2) 

[ L sm(kxL—2a) 
1 

4 4kx 

a'ikSi dkx. (3.56) 

Since a(kx) —» 0 as kx —» 0, we have, for large L, 

sm(kxL— 2a) ir 
«-«(*,), (3.57) 

Ux 4 

and putting this into (3.56) leads to an expression which 
agrees perfectly with the correct result (3.53).21 So we 
have demonstrated that the density method can be 
used to calculate (l/20fc)E» 1, with p(x) given by the 
very simple formula (3.55). 

Next we evaluate the quantity (l/2a)Yln(n\T\n), 
which can be written in the form 

E /0n*(-!V2)<M3r 
2a' 

= — E [likn*-U0(l+r*'*)-'1l\4>n\*d*r, (3.58) 
2a n J 

where we have made use of the Schrodinger equation 

21 We must remember that only half of the 5-function peak con
tributes to the integral (3.56) because this integral runs only over 
positive values of kx. 

kF* 2U0 rkF 

- (kF
2-kx

2) 
Jo 16T IT2 J o 

X j I u(kx,x) 12(\+e~*la)~ldxdkx. (3.59) 

J-hL 
The computation of this quantity by means of the 

density method requires the evaluation of the kinetic 
energy density r(x), which is given by 

rW = E|*»(r) 12Rk„2- tfo(l+er*>«)-i]. (3.60) 
n 

Treating this formula in the same way as we treated 
(3.54), we obtain the approximate result 

T(X) = — / (kF*-kx*)\u(kx,x)\2dkx 
2TT2J0 

-U0p(x)(l+e~*/a)~K (3.61) 

That this approximation is sufficiently accurate for the 
evaluation of (l/2a)^n(n\T\n) is shown directly. 
Substituting (3.61) into the equation 

1 r00 

— T,(n\T\n)= / r(x)dx, (3.62) 
2a n ' J_IL 

and carrying out the x integration before the k integra
tion by means of (3.49), one easily obtains an expression 
which agrees with the correct result given in (3.59). 
Hence (l/2a)J^n(n\T\n) may be correctly evaluated 
by the density method, with formula (3.61) used for r(x). 

We can use our results to write two different but 
equivalent formulas for 5(K.E.). The summation 
method gives, when (3.51), (3.53), and (3.59) are com
bined, the expression 

1 rhF 

5(K.E.) = - {lk,*-k*)k4x(k.)dk, 
x 27 0 

kF
i 2U0 rk" HF* 2U0 r 1 

+ / (kps-k/ 
80TT x2 Jo 

J-u 
I u(kx,x) I Hl+e-^-Hx dkx, (3.63) X 

where we have integrated by parts and used the 
boundary condition a(kx) —» 0 as kx —> 0. The density 
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method, on the other hand, is easily seen to give 

5(K.E H ZT(x)-£>kF*p(x)ldx, (3.64) 
\L 

where p(x) and r(x) are given by (3.55) and (3.61), 
respectively. 

Formula (3.63) is clearly suitable for numerical com
putation because the space integral in the last term 
receives appreciable contributions only from the surface 
region and can therefore be calculated numerically. But 
is the same thing true for the integral appearing in 
(3.64)? The answer is yes, and we show this by evaluat
ing the contribution to the integral from values of X 
lying between —\L and —Xi, where — X\ is a point in 
the interior of the nucleus but far to the right of — \L 
(i.e. Xi is much larger than both kf1 and the surface 
thickness, but Xi<C|£). Using (3.55) and (3.61), we find 

/ 

-Xl 

[T(X)—rok P
2p(x)]dx 

1 fkp 

2W0 

X 

2)(k/-UF2)dkx 

/

-Xi 

\u(kx,x)\2dx, (3.65) 

where we have dropped a term involving (l+e~x/a)~1, 
a quantity which is only appreciable in the surface 
region. Now, using the fact that u(kXjx)^ — sin(kxx+a) 
for x<—Xh we find by a calculation similar to the 
derivation of (3.49), that 

/

- X i 

I u(kx,x) 12dx 

L-lXx sin(kxL-2a) s>in(2kxXi-2a) 

4kx 4kx 

(3.66) 

But since L and 2Xi are both much larger than kf^y 
each sine function in (3.66) equals (ir/4:)d(kx), and one 
cancels the other. The only surviving term in (3.66) is 
(L— 2Xi)/4, and when this is substituted into (3.65), 
one easily finds that the right-hand side of (3.65) 
vanishes. Hence the contribution to the integral in 
(3.64) from any interval in x which is entirely outside 
the surface region is negligibly small. Thus, (3.64) is not 
only a correct formula but is also a useful one, because 
the integral can be evaluated accurately from a knowl
edge of the integrand for values of x in the surface 
region alone. 

We now consider the potential energy contribution to 
the surface energy, which is denoted by 5(P.E.) and is 
given to first order in the Brueckner-Goldstone expan
sion by 

1 1 
5(P.E.) = — \H(mn\G\mn) VNZ 1. (3.67) 

2a rnn 2a 

In this expression, VN represents the potential energy 
per particle of infinite nuclear matter and is given by 
either of the two equivalent expressions, 

7*= (3/16 TT^F3) f 
Jwl 

d3kmddkngu 
i whole sphere 

Xf d3kmd*kn(gll+g22). (3.68) 
J half sphere 

In the integral labeled "whole sphere," the variables 
are allowed to range over the entire Fermi sea, while 
"half sphere" means that both kmx and knx are restricted 
to positive values. 

Using (3.17), we can write the first term of (3.67) in 
the form 

1 
— | X tyi>n IG | mn) 
2a run 

'—X^/NnJfn)\ gmn(X)dX. ( 3 . 6 9 ) 

J-\ a2 -\L 

To evaluate this by the summation method, we must 
calculate the integral for each pair of indices (m,n) and 
then sum over m and n. In the density method, we re
place Nn, wherever it occurs, by L, and we use only the 
first term of (3.39) to sum over (m,n) inside the integral; 
then we integrate the resulting function of X between 
—\L and <x>. We will first evaluate (3.69) rigorously, 
using the summation method, and then show that the 
same answer is obtained by the density method. 

To apply the summation method, it is useful to write 
(3.69) in the form 

— \ YKwin | G | mn) 
2a ran 

2 
= — E -

a2 ran N, 

1 ( rXo 

/ ( (gmn(X)-gnn(X))dX 

L + gmn(X)dX+gmJ(X,)-gmn
1(-^L)\ , (3.70) 

where XQ is an arbitrary point which we choose to lie 
in the surface region. For every term in the curly 
brackets except the last, we may replace Nn by L and 
use only the leading term of (3.39) for the summation, 
but the term involving gmn

J(—%L) requires more de
tailed examination. We find with the aid of (3.7) and 
(3.45) that 

gmn
I(-iL)=-(L/16)(g11+g22) 

+ iKkntZ9knz)022Z—iL+a'(kmx)'], ( 3 . 7 1 ) 

where 5(kmX)knx) is the Kronecker delta, and this result 
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may be substituted into (3.70) and the summation per
formed by means of (3.39). After using (3.47) and (3.68), 

To evaluate (3.69) by the density method, we write 

The density method gives the much simpler formula 

S ( P . E . ) = P*PO/" OV(X)-p(X)/Po']dX} (3.75) 

where VN and p(X) are given by Eqs. (3.68) and (3.55), 
respectively, and W(X) is defined by 

W(X) = —^— [ d*kmd*kngmn(X). (3.76) 
T2VNPO ./half sphere 

Formula (3.74), though somewhat unwieldy, is clearly 
usable for computation because the space integrals 
receive appreciable contributions only from the surface 
region and hence can be correctly evaluated by numeri
cal methods. The space integral in (3.75) also has this 
desirable property, as may be shown by a method 

and dropping terms which vanish in the limit of a large 
system, we finally obtain 

similar to that previously used in the discussion of ex
pression (3.64) for 5(K.E.). Thus only the surface region 
contributes appreciably to the space integral in (3.75), 
and this formula is therefore useful for numerical 
computation. 

The two formulas we have derived for the surface 
energy correspond to two complementary ways of look
ing at the physical origin of the surface energy. Consider 
the surface kinetic energy for example. Expression (3.63) 
for 5(K.E.) was derived by a discrete summation over 
allowed states, while (3.64) is an energy density formula. 
The last term of (3.63) accounts for the loss of kinetic 
energy experienced by a particle which enters the sur
face region, where the one-particle potential becomes less 
attractive. The second term results from the fact that for 
a nucleus of finite size, the spectrum of allowed values 
of kx does not extend all the way to zero as it does in 

§]£(flW|G|w») = — / d*kmdZkn\ (gmn — gmn)dX+ I gmndX+gmn
Z (X 0) | H VN 

2® ™,n 7T6 J half sphere U-\L J X0 J 3T2 

~ / d3kmd2kni(gu + g22)+— / d3kmd2knig22. (3.72) 
8TT5 J half sphere, J half sphere, 

knx = 0 knx =km 

2 1 r r00 2 r 
— E / gmn(X)dX~> dX~ d*kmd*kngmn(X) 
a2 mn NmNn J-\L J-\L ^ A a l f sphere 

rx0 2 r r™ 2 r 
/ dX— / d3kmd3kn(gmn — gmn)+ I dX~- / (Pk^kngi 

J^L 7T6 7 half sphere J XQ 7T J half sphere 

+ - f d%md*kn[_lmni{X,)-gmni{-hL)-]. (3.73) 
TT J half sphere 

In this last expression kmx and knx are to be treated as continuous variables, and, since L is arbitrarily large, the 
sine functions in Eq. (3.45) for gmn(~§£) may be replaced by the appropriate Dirac delta functions. We 
substitute the resulting formula for gmn(—J£) into (3.73) and make use of the fact that when knx—0, we have 
^12=^21 = ^11=^22; and that if kmx=0, it is true that ^12=^21 = 1̂1 = 2̂2. There results a formula for 
(l/2d)^^2mn(mn\G\mn) which agrees perfectly with the correct expression (3.72). We therefore find that the 
density method is accurate, i.e., that the arrow in formula (3.73) may be replaced by an equality sign. 

We can now collect our results and write two equivalent formulas for 5(P.E.). Combining Eqs. (3.67), (3.72), 
and (3.53), we find 

2 r { rx° r } 1 r 
5(P.E.) = ~ / d*kmd*kn\ / (gmn~gmn)dX+ gmndX+gm^(X0) + / d*kmd2knlg22 

7T6 J half sphere U -\L J X0 J 87T5 J half sphere, 
knx —kmz 

1 /• 2 /•** kF
2 

/ d*kmd2knl(gn+g22)+-VN kAk*)dkx+—VN. (3.74) 
87T5 J half sphere, 7T2 Jo 4 x 

k»x=0 
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the case of infinite nuclear matter. The first terrain 
(3.63) appears because the spacing between allowed 
values of kx is not uniform, as it is for infinite nuclear 
matter, but decreases as kx increases [this is because 
particles of higher momentum move in a larger region of 
configuration space; see the discussion of (3.47)]. 

Formula (3.64) for S(K.E.) gives rise to a completely 
different point of view and shows that we may, if we so 
desire, regard the surface energy as being localized in the 
surface region. This formula involves a comparison of 
the actual kinetic energy density T(X) with the kinetic 
energy density which would prevail if r{x) were propor
tional to p(x). The two formulas for S(P.E.), although 
more complicated than those for S(K.E.), may be dis
cussed and compared in the same way. 

E. Numerical Results 
In this section we give numerical results obtained by 

evaluating the various quantities occurring in the 

- 4 - 3 

X(FERMIS) 

FIG. 1. Behavior of the particle density (solid curve) and kinetic 
energy density (dashed curve) in the surface region. Both quan
tities have been normalized by dividing by their asymptotic 
interior values, which are PO = 2^ 3 / (3TT 2 ) and ro=^V(5x 2 ) . 

formulas for the surface energy. The calculations were 
performed on the Burroughs 220 and Control Data 1604 
computers at the Cornell University Computing Center. 

Equation (3.4) was solved numerically in order to 
obtain the wave functions u(x) and phase angles a{kx) 
and then expressions (3.55) and (3.60) for p{x) and r(x) 
were evaluated. The resulting behavior of p{x) and T{X) 
in the surface region is shown in Fig. 1, and three of the 
one-particle wave functions are plotted in Fig. 2. 

The particle density has a "90-10 distance" of 2.48F 
and falls to half its interior value at x— — 1.22F. The 
kinetic energy density, of course, falls off more rapidly 
than the particle density (in the Thomas-Fermi ap
proximation, for example, we have 7-ccp5/3). From the 
plot of the wave functions in Fig. 2, we see that particles 
with a high value of kx penetrate the surface region 
extremely well, while particles of low momentum hardly 
"see" the surface at all. 
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FIG. 2. Behavior of the one-particle wave function 1 
surface region for three values of kz. 

(x) in the 

IS 

The phase angle a is plotted as a function of kx 

Fig. 3. It is clear from the figure that 5N= —2da/dk 
an increasing function of kx, as we must expect. 

By using the results just described, we evaluated the 
two equivalent expressions (3.63) and (3.64) for 5(K.E.), 
obtaining a result of —2.48 MeV F~~2 in each case. The 
values of the individual terms of (3.63) are shown in 
Table I, and we see that the loss of kinetic energy by a 
particle in the surface region is the dominant effect. 

In order to evaluate the last four terms of Eq. (3.74) 
for 5(P.E.), we must calculate diagonal nuclear matter 
matrix elements such as gu and £22. Such matrix ele
ments depend only on the relative momentum k and 
total momentum K, and are easily obtained by numeri
cally solving Eq. (3.25) and putting the result into 
(3.11). The dependence of the diagonal matrix element 
g(k,K) on K is found to be very slight and almost 
quadratic. Its behavior as a function of k, for K=0, is 
shown in Fig. 4 and is similar to that obtained by 
Moszkowski and Scott19 for the same two-body inter
action but a different energy spectrum. The numerical 
results for the last four terms of (3.74) are given in 
Table I. The value obtained for VN was —35.61 MeV, 
which gives a binding energy for infinite nuclear matter 
of 7.6 MeV particle. 
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FIG. 3. The phase angle a as a function of kx. In the interior of 
the nucleus, the one-particle wave function u(x) has the form 
— sm(kxx-\-a). 
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In the first term of (3.74), the quantities gmn(X) and 
gmnT(X) involve both diagonal and off-diagonal nuclear 
matter matrix elements, but these are easily obtained 
by solving (3.25) and using (3.11). The only part of the 
calculation which was at all time consuming for the 
Control Data 1604 computer was the evaluation of 
gmn(X). This required the computer first to calculate the 
functions <j>LM(r,X) and ILM{T,X) from formulas (3.16) 
and (3.22). Then Eq. (3.19) was solved for uLM(r,X) 
by one of the approximation methods previously dis
cussed, and this result was used along with (3.24) and 
(3.18) to obtain gmn(X). 

For a given pair (m,n) of interacting particles, gmn(X) 
was computed from X= — 5.20 F up to X= + 1.0 F in 
steps of 0.16 F, and this required 1.5 minutes of com
puter time. The x approximation was used for X larger 
than — 2.20 F, and the sine wave method was used for 
more negative values of X. I t was estimated that the 
uncertainties in the surface energy caused by the use of 

TABLE I. Values of the terms in the surface energy formula. 

Terms in S(K.E.) Value in MeV F"2 

^ 4 / 8 0 T T 

rkF 

(1/TT2) / (ikF2-kx*)kxa(k*)dkx 

-(2£VTT2) / (kF*-kx*)dkx 

+0.835 

+1.003 

i 
/

oo 

4£ 

X / \ukx(*) 12(1+e-*'a)~1dx -4.320 

Total=S(K.E.) = -2.482 

Terms in S(P.E.) 

( 2 / T T 2 ) ^ 

kFWN 

(1/8TT5) / dSkmd2knl922 
! half sphere, 

knx =&»» 

rkF 

N J kxa(kx)dkx 
Jo 

L 
k 

- ( 1 / 8 ^ ) / 
Jh 

Jh 

f 
J XQ 

-4.353 

-6.377 

-4.323 

dzkmd?kni (gu+222) +13.676 
half sphere, 

knx = 0 

(2/7T6) / dZkmdZkn 

! half sphere 

X \ I (gmn — gmn)dX 

+ / gmndX+r(Xo) \ +5.286 
X0 

Total=S(P.E.) = +3.909 

S=S(K.E.)+S(P.E.) = 1.43 

the % approximation and the sine wave approximation 
were 0.011 MeV F~2 and 0.014 MeV F~2, respectively. 
So neither of these approximations affects the final 
result by more than 1%. 

Some of the results for gmn(X) and gmn(X) are plotted 
in Fig. 5. The main feature is the large enhancement of 
the interaction of two particles in the surface region. As 
kn& decreases from 1.375 F _ 1 , with kmx fixed at 1.375 F _ 1 , 
the peak in gmn(X) becomes smaller because particles 
of low kx do not penetrate the surface region very effec
tively. Tire very high final maximum in gmn occurs 
because the wave functions um and un are especially 
large and because the momentum of each particle is 
reduced in the surface region. For kmx=knx= 1.375 F _ 1 , 
for example, un(x) at tains ' the value 1.11 at its last 
maximum in the surface region and since gmn is roughly 
proportional to | umun \2, this effect could increase gmn by 
a factor of (1.11)4=1.52. The reduction of momentum 
of each particle in the surface causes the relative mo
mentum of two interacting particles to be smaller; so 
this effect also enhances the interaction in the surface 
region. 

After the X integration involved in the first term of 
(3.74) had been carried out, the result was integrated 
over momentum space, and the final result is given in 
Table I. Adding up all the contributions gives a value of 
3.91 MeV F - 2 for 5(P.E.) and a value of 1.43 MeV F~2 

for the total surface energy S. 
The largest computational uncertainty in this result 

arises from the coarseness of the mesh used in the 
&-space integration in the first term of (3.74). All other 
meshes were refined until the associated errors were neg
ligible, but this procedure was not feasible for the first 
term of (3.74) because calculating the integrand at a single 
mesh point consumed 1.5 min on the computer. Sincegmn 

depends on the four variables kmx, knx, ki, KL, and since 
the dependence on K± is quadratic and very weak, three 
of the six integrations involved in the phase-space 
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FIG. 4. The nuclear matter G-matrix element gn as a function 
of the relative momentum k. The total momentum K of the inter
acting pair of particles is taken to be zero. To change the units of 
gu from fermis to MeV F3, one must multiply by 41.467. 
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FIG. 5. The behavior of the effective two-body interaction gmn(X) in the surface region, for kmx = 1.375 F"1 and three different values 
of knx. The solid line represents —gmn(X), and the dashed line is a plot of — gmn(X), the function to which —gmn(X) reduces in the 
interior of the nucleus. Note the different scales used on the vertical axes of the three graphs. 

integral could be done analytically. The final three-
dimensional integral with respect to kmx, knx, kx, was 
carried out by means of Simpson's rule, using a mesh 
with 88 points. The uncertainty produced in the surface 
energy by the use of this rather coarse mesh was esti
mated to be 0.07 MeV F~2. The computational un
certainty from all sources in the final result of 1.43 MeV 
F-2 should be less than 0.10 MeV F~2. 

It is also of interest to calculate 5(P.E.) by means of 
Eq. (3.75), but we are not able to evaluate this expres
sion very accurately. The trouble is that gmn(X) varies 
rapidly with kmx and knx when X is fairly large, and the 
k-space integral for W{X) cannot be calculated ac
curately with the coarse mesh described above. We can 
estimate the range of X for which this mesh will give 
W(X) correctly by noting that gmn(X) contains terms 
which vary like sin2&mxX. If the spacing in kmx or knx is 
Ak, then Simpson's rule should at best be accurate up to 
\X\ max, where 2Ak\X\max=w/2. Since Ak is about 0.25 
on the average, we find |X| max=7r. Thus, we may hope 
that numerical integration will give reasonable values 
of W(X) for X > - 3 , but for X < - 3 , the values of 
W(X) obtained in this way are probably useless. 

The obvious solution to this difficulty is to use a finer 
mesh in the k space integration for W(X). However, 
calculating the necessary values of gmn(X) would require 
many hours of additional computer time and was not 
felt to be worthwhile. Instead, we have used our 88-point 
mesh to calculate W(X) for X> —3, and we have cut off 
the integral in (3.75) at this point. The result obtained 
for S(P.E.) in this way is 3.40 MeV F"2 which is 0.51 
MeV F~2 below the correct value of 3.91 MeV F~2. The 
functions W(X) and p(X)/p0 are plotted in Fig. 6, and 
it appears that there will be an appreciable contribution 
to the integral from the region X<— 3.0 which will 
presumably account for the above discrepancy. 

IV. CONCLUSION 

We have seen that the reference spectrum for infinite 
nuclear matter can be generalized so as to apply to the 

surface of a large nuclear slab. When a simple reference 
spectrum approximation is used for the one-particle 
Hamiltonian of intermediate states, the G matrix in the 
surface region can be calculated to high accuracy by using 
the % approximation and the sine wave approximation. 

By using the "summation method" and the "density 
method/' we have derived two distinct formulas for the 
surface energy which are valid to first order in the 
Brueckner-Goldstone expansion. These formulas are 
mathematically equivalent but are very different in 
appearance and represent two complementary ways of 
understanding the physical origin of the surface energy. 
In a given situation, one formula or the other may be 
more useful. For example, we were easily able to see 
from the energy density formula (3.64) that 5(K.E.) 
must always be negative, but this fact is not obvious 
from expression (3.63) for 5(K.E.), which is'derived by 
the summation method. On the other hand, the summa
tion method provides the more useful formula [Eq. 
(3.74)] for the numerical calculation of S(P.E.), at 
least in the case considered here. Although expression 
(3.74) is very unwieldy and consists of a large number of 
terms, most of which are considerably larger in magni
tude than 5(P.E.) itself, almost all of these terms in
volve only nuclear matter matrix elements and the 

i.o h 

FIG. 6. The behavior of 6 
the functions W(X) and 
p(X)/po which appear in 
Eq. (3.75) for the surface .4 
potential energy. 
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phase angle a(kx), and they can therefore be computed 
with great accuracy. 

Our trial calculation gives a value for the surface 
energy of 1.43 MeV F~2, and this corresponds to a term 
20.6^42/3 MeV in the semiempirical mass formula for the 
total energy of a nucleus containing A nucleons. The 
semiempirical formulas of Green22 and Cameron23 give 
values of 17.97 MeV and 25.84 MeV, respectively, for 
this coefficient, and our result therefore seems to be 
reasonable. 

The surface energy would be considerably larger if it 
were not for the large enhancement of the interaction 
between a pair of particles in the surface region, which 
is shown in Fig. 5. For instance, if W(X) were propor
tional to [POO/PO]2 , as is physically reasonable for 
a short-range two-body interaction, we would find 
5*(P.E.) = 4.59 MeV F~2, and the total surface energy 
would be 50% larger than it actually is. 

The trial calculation gives a value of 7.6 MeV for the 
binding energy per particle of infinite nuclear matter, 
but the correct value is about 15 MeV. In order to 
correct this discrepancy, we might arbitrarily increase 
the strength of the two-body potential until VN goes 
from —35.6 to —43.0 MeV, an increase in magnitude 
of 21%. Expression (3.75) would then increase by 
roughly the same percentage, and S(P.E.) would be 
increased from 3.91 to about 4.7 MeV F~2. The calcu
lated value for S would then increase from 1.43 to about 
2.2 MeV F~~2, and this latter value corresponds to a 
coefficient in the semiempirical mass formula of 31.6 
MeV, which is too large. 

The most important shortcoming of the trial calcula-

22 A. E. S. Green, Phys. Rev. 95, 1006 (1954). 
23 A. G. W. Cameron, Can. J. Phys. 35, 1021 (1957). 

tion presented here is the lack of self-consistency in the 
one-particle potential and wave functions. In addition 
to improving the calculation of the surface energy, a 
self-consistent determination of the wave functions of 
occupied states would lead to a theoretical prediction 
for the behavior of the particle density in the surface 
region. We have indicated how the methods of this 
paper could be used to investigate the self-consistency 
problem. 

We have also used an oversimplified two-body inter
action in our calculation. A realistic nucleon-nucleon 
potential has interaction in all partial waves, as well as 
tensor and spin-orbit forces. It may well be that the 
relative importance in the surface region of various 
partial waves, or of central, tensor, and spin-orbit forces, 
differs from that in infinite nuclear matter, and this 
could have an effect on the surface energy. 

We have therefore made a beginning towards a de
tailed theory of the nuclear surface, but there remain a 
great many problems which require careful considera
tion. It is hoped that some of the results of this paper 
will be useful in this work. 
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